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Project Summary 

The goal of this project was to complete a study of Bahar's full-wave approach to rough 
surface scattering1-7 that was begun under ONR support.8 The two proposed items of technical 
work have been fully completed. 

In the ONR-supported work, a study was begun for a simplified scattering problem: 
Scattering from a one-dimensional (1-D) surface with the Dirichlet (zero field) boundary 
condition using a Gaussian roughness spectrum. The full-wave method was implemented 
numerically and used in Monte Carlo calculations of the scattering cross section. Comparisons 
were then made with exact integral equation results, and with the Kirchhoff and perturbation 
approximations. We found that the full-wave prediction did not reduce to the lowest order 
perturbation prediction when the perturbation result was known to be accurate, as shown by 
exact calculations.9 This is contrary to conclusions reached by Bahar and is an important 
finding, showing that the full-wave approach is not as general as previously thought. The full- 
wave prediction did reduce to the Kirchhoff prediction when the Kirchhoff approximation is 
known to be accurate, as shown by exact calculations.10 In fact, the full-wave result was found 
to agree closely with the Kirchhoff result for all cases studied, whether or not the Kirchhoff 
result was accurate. 

In the present study, further work was done to satisfy an objection raised by Bahar and to 
strengthen the conclusions reached with the numerical studies. Results of this work were 
presented at the National Radio Science Meeting at Boulder, Colorado (January, 1989). The 



Radio Science paper" summarizes the research findings and is attached. [Slide 6 in Ref. 11 
shows the discrepancy between the full-wave and perturbation theory/integral equation 
predictions.] 

The present study involved two issues, which will be briefly summarized. 

1. Bahar raised one principal objection to the numerical approach used in our work. He 
maintained that because we used a taper function (See Ref. 11) to suppress edge effects, the true 
full-wave prediction was not obtained in the Monte Carlo calculations. We have shown in this 
study that use of the taper function does not affect the comparison with perturbation theory. 
This can be seen clearly in Ref. 11, Slide 8, which shows that the untapered and tapered results 
are essentially identical. [The need for the taper function only becomes apparent if the coherent 
component is included (Ref. 11, Slide 7), or if the backscattered levels are about 10 dB or more 
lower than in Ref. 11, Slide 8.] Thus, we find that when the full-wave method is implemented 
exactly as specified by Bahar, it does not reduce to the perturbation prediction when the surface 
heights and slopes are made small. This is contrary to Bahar's conclusions. 

2. The second issue in this research concerns Bahar's method of calculating full-wave 
results. In past work Bahar has obtained full-wave predictions, but not by the Monte Carlo 
method previously mentioned, In Bahar's method (commonly used in scattering theory) the 
statistical properties of the surfaces are used to evaluate the needed expectations. In other 
words, formal averaging is used rather than Monte Carlo averaging. However, Bahar (prior to 
January 1989) has made two approximations to simplify the evaluation. First, the heights and 
slopes are taken as uncorrelated. Second, the slopes are taken as "delta" correlated. When both 
approximations are made, the evaluation is considerably simplified. 

It appeared that the large differences between our Monte Carlo full-wave predictions and 
Bahar's full-wave predictions arose because of Bahar's two approximations. To investigate this 
issue we have formally averaged the full-wave prediction without making Bahar's 
approximations. The result is shown in Ref. 11, Slide 11, The formally averaged and Monte 
Carlo results are in essentially perfect agreement, and both disagree with perturbation theory and 
exact results (Ref. 11, Slide 4). When Bahar's approximations are made, the formally averaged 
full-wave prediction is changed significantly and agrees closely with first-order perturbation 
theory, as Bahar found. But "approximations" that significantly change the results are 
unacceptable. Thus, the true full-wave prediction must be taken as the one before Bahar's two 
additional approximations, and this prediction does not reduce to the perturbation result. We can 
now see what happened for surfaces with small heights and slopes:    Bahar started with a full- 
wave prediction that is incorrect, made further approximations that significantly changed the 
result, and (by coincidence) ended up with the correct result. In the final analysis, we must 
conclude that the full-wave method does not reduce to first-order perturbation theory when 
perturbation theory is accurate. 
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Abstract 

Results were presented previously (National Radio Science Meeting, 
Boulder, Jan 5-8, 1988: Paper B/F1-1) for Bahar's full-wave approach to 
rough surface scattering. It was shown using Monte Carlo methods that 
when the surface heights and slopes become small, the full-wave prediction 
does not reduce to first-order perturbation theory results. Instead, the full- 
wave prediction agrees closely with the Kirchhoff solution. The case 
examined assumed the Dirichlet (zero field) boundary condition using one- 
dimensional surfaces with a Gaussian roughness spectrum. In this paper 
the full-wave method has been applied to the same case, but the average 
scattered intensity is found using a "formal average" rather than a Monte 
Carlo average. To obtain the formal average, the four-dimensional normal 
probability density is used to account fully for correlations between heights 
and slopes. It is found that the formally averaged full-wave predictions are 
completely consistent with the original Monte Carlo results. This work 
shows even more convincingly that the full-wave solution does not reduce 
to the first-order perturbation solution when the heights and slopes become 
small. [Work supported by ARO.] 
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Slide 2 

Results from an examination of Bahar's "full-wave" approach to 
rough surface scattering were presented at the January 1988 National 
Radio Science Meeting.(1) These results will be briefly reviewed. Slide 2 is 
reproduced from the 1988 presentation. 

We are interested in the accuracy of the full-wave method applied to 
scattering from randomly rough surfaces. We consider a simplified 
scattering problem using the Dirichlet (zero field) boundary condition with 
surfaces which are one-dimensional (a 2-D scattering problem). This 
corresponds to scattering of horizontally polarized electromagnetic waves 
from perfectly conducting 1-D surfaces. The surfaces are assumed to have 
a Gaussian roughness spectrum and Gaussian height and slope 
distributions. 

A Monte Carlo approach was used to obtain the average scattered 
intensity in the far field. For each example, 50 surface realizations were 
generated. The scattered field from each surface was computed as a 
function of scattered angle. The scattered intensities were then averaged 
over the 50-surface ensemble to obtain the bistatic radar scattering cross 
section. 

Expressions used in computing the full-wave predictions were taken 
from Ref. 2, which is restricted to the 1-D surface case. The full-wave 
predictions were compared with those obtained with an exact integral 
equation method, with the Kirchhoff approximation, and with first-order 
perturbation theory. Details of the integral equation method are given in 
Ref. 3. 
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Slide 3 

The notation and conventions are similar to those of Ref. 2. (The z- 
axis here corresponds to the y-axis in Ref. 2.) The full-wave solution for the 
scattered field is given by Eq. (4.10) of Ref. 2, which reduces to (1) for the 
perfectly conducting case. In (1), 2L is the surface length and A is given by 

A_      icüleL       e-ik(Po+p) 

K(PPo)1/2 

where 
co = radiation angular frequency 

k - radiation wave number 

IB = constant proportional to incident field amplitude 

p0 = distance from source to center of surface 

p = distance from center of surface to far field point 

Note that the angles eiY and e'Y are measured relative to the local normal n 
and thus vary along the rough surface. The position vector p' = x'x + f(x') z 
denotes a point on the rough surface f(x'), and v = kj - k(. 

The condition - -| <eiY,e,Y< ~ will be satisfied for points on the 

surface that are not locally shadowed (for either incident field or scattered 

field shadowing). The contribution to (1) is set to zero if either | e^l > — or 

|QtYl>|-.  which  corresponds to the  use of the  simplest shadowing 

function. For the example discussed later, the incident angle is 45° and the 
rms surface slope angle is 5°, minimizing shadowing effects. 

In Ref. 2 Bahar gives a separate solution referred to as the "iterative 
solution." The solution given by (1) is the solution of primary interest. It 
corresponds to the full-wave solutions given by Bahar in papers after 1980. 
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Slide 4 

To be consistent with the results given in Ref. 3, the scattered field is 
characterized by the scattering strength defined in Slide 4 in terms of the 
bistatic radar scattering cross section. [The scattering strength is 
commonly used in the underwater acoustics context.] The definition of the 
radar cross section is also given in Slide 4. Here <is> is the 50-surface 
ensemble averaged scattered intensity at far field range p and at the 
scattered angle e'. The surface length is 2L and the incident intensity 

= | Ei|2where[Eq{3.7b), Ref. 2] 'inc 

Ej_ le0) e-l(kp0-*/4) 

°     2(2rckp0)1/2 

The definition of the radar cross section in Slide 4 is appropriate for a 
plane wave incident on a surface of length 2L. As discussed in Ref. 3, 
numerical scattering computations can be affected by scattering from 
edges unless precautions are taken. Here, the surface field is tapered to 
suppress edge effects for all Monte Carlo computations, unless otherwise 
noted. Thus, a factor of e~*2/g2 is included inside the integral in (1). Then in 
the cross section the surface length 2L is replaced by an "effective length" 

■\j~ g. Numerical experience with this tapering procedure shows that it 

gives predictions in agreement with theory based on infinite surface 
lengths. It will be shown later that tapering can be avoided for the particular 
example considered if the coherent field is removed from the scattered 
field. 
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Slide 5

Slide 5 is taken from the January 1988 Summary slide. The
conditions are listed: Dirichlet boundary condition, 1-D surface, and
Gaussian roughness spectrum.

First, it was found that the full-wave solution agrees closely with the
Kirchhoff solution when the Kirchhoff solution is accurate. This is
consistent with the conclusion reached by Bahar in Ref. 2.

Second, it was found that the full-wave solution does not reduce to
the first-order perturbation solution as the rms surface heights and slopes
become small. This is contrary to the conclusion reached by Bahar in
Ref. 2.

In the present paper the perturbation example will be examined
further.
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Slide 6

Slide 6 shows a comparison between full-wave, integral equation,
and first-order perturbation theory predictions for an example where first-
order perturbation theory is accurate. [This was Example 3 in Ref. 1]. The
incident angle is 450, and the scattered angle of ranges over ±90.
Backscattering occurs at e'= -45o . Here h is the rms surface height and i is
the surface correlation length. The rms surface slope is s = 4 h/I= tan 5° .

The full wave and integral equation predictions were obtained with
Monte Carlo computations and include a coherent peak t f= 450; the
coherent component is large because kh << 1. The finite width of the
coherent peak is due to the finite length (80 k) of the surfaces used in the
computations.

The agreement between the integral equation and perturbation
theory curves shows that first-order perturbation theory is accurate for this
example. The perturbation theory curve is the standard first-order
theoretical result (e.g., see Ref. 3), and is not obtained by Monte Carlo
methods. Only the incoherent component has been computed with
perturbation theory, so the specular peak is missing. The difference
between the integral equation and perturbation theory curves near e1=+90°

resufts from finite angular resolution effects with the integral equation
prediction. Increases in surface length should lead to agreement closer to
of = ±900.

The important result shown in slide 6 is that the full-wave prediction
does not reduce to the first-order perturbation solution when the rms height
and slope become small.
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Slide 7

One might argue that the use of a taper function (in order to suppress
edge effects) could have significantly changed the full-wave predictions and
possibly led to the discrepancy in Slide 6. Slide 7 shows a comparison of
the tapered and untapered predictions for this example. The only effect of
removing the taper function is the addition of side-lobes to the specular
(coherent) peak. In the back direction (of < Oc) the full-wave prediction is
unchanged.
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Slide 8

It is possible simply to subtract out the coherent component in
slide 7. This is done by first forming the coherent average, that is, the
complex scattered field is ensemble averaged, then the coherent cross
section is computed. Next the incoherent cross section is found by
subtracting the coherent cross section from the total cross section. The
result is shown in slide 8 and is compared with the original tapered full-
wave prediction, which includes the coherent field.

Clearly, tapering is not responsible for the discrepancy in slide 6.
The surface length has also been increased by factors of P and 4 with no
change in the full-wave predictions.
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Slide 9

Bahar also presented the results of his calculations at the Radio
Science Meeting (Jan, 1988) for the example in slide 6. His results were
obtained with a "formal average" method using the statistical properties of
the surfaces. Bahar's method gave results in good agreement with first-
order perturbation theory (and with the integral equation) and disagreed
with the full-wave Monte Carlo results in slide 6. However, Bahar's
approach utilized two approximations (discussed in slide 10).

We could only conjecture then that if the formal average was done
without Bahar's approximations, then the results should agree with our
Monte Carlo predictions. We have, therefore, computed the formal average
cross section without these approximations.

We assume the surface statistics are Gaussian and stationary
(independent of position). Then the incoherent radar cross section is given
by (2) in terms of the moments M(x) and M., which are given by (3) and (4),
respectively. The function F, given by (5), depends on i(x)- d(x), ei, and of;

dx
in (3) and (4) this angle dependence is suppressed.

The moment Mo can be caiculated easily numerically and is
independent of x. The moment M(x) is much more difficult to compute,
since it involves the heights and slopes at two points with separation x.

---.-- m~ -- ,i mmimm i m m lJ
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Slide 10
The moment M(x) is given by (6) where P(fl, f2 1, f2 x)iS the four-

dimensional normal probability density function. (See, for example,
Middleton 4). In (6), the limits on the slope integrations arise because, for
given eo and e1, the slopes are restricted so that the condition immediately
below (1) is satisfied. The two height integrations (over f, and f2 ) can be
done analytically. We are then left with a three-fold integration to obtain the
scattering cross section given by (2).

In previous work5 Bahar has made two approximations to simplify
this evaluation. First, the heights and slopes are taken as uncorrelated.
This means that the probability density function factors as in (7). This
approximation simplifies the algebra considerably, but one is still left with a
three-fold integration to evaluate (2). Second, the slopes are taken as
"delta" correlated as given by (8). Thus, P2 

= 0 unless f, = f2 , and also P2 is
independent of x. To be consistent with this approximation, M, must be
modified and is given by

Mo = < F2 [f] >

When both approximations (7) and (8) are made, only single integrations
must be done.

When evaluating the complete expression (6) or when using the first
approximation only, (7), special care is required in the slope integrations at
small x, because the probability density functions become singular as x _4 0.
Thus, separate numerical algorithms were used for small x and for general
x; detailed checks were made to ensure that the methods agreed well at the
transition point.
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Slide 11

In Slide 11 the full-wave formal average from (6) (i.e., accounting
fully for height/slope correlations) is compared with the Monte Carlo result
from slide 6. The formal average was obtained at 50 intervals and, as
mentioned previously, does not include the coherent peak.

The agreement between the two methods is excellent.
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Slide 12

Slide 12 shows the result for uncorrelated heights and slopes (7)
without assuming (8). Again, the formal average curve was computed at 5U
intervals. The "uncorrelated" prediction differs from the full-wave Monte
Carlo results and is far from the first-order perturbation prediction.
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Slide. 13

Slide 13 shows the result with both approximations (7) and (8) and is
labeled as "Full Wave (Bahar)". The prediction is now far from the Monte
Carlo result in the back direction and in good agreement with first-order
perturbation theory.
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Slide 14

In summary, we find that for the case considered (Dirichlet boundary
condition, 1-D surface, and Gaussian spectrum) the full-wave solution does
not reduce to the first-order perturbation solution as the rms surface height
and slope become small. This is shown by the Monte Carlo solution and by
the formally averaged solution. Only when additional "approximations" are
made does the formally averaged solution appear to reduce to the
perturbation solution. This reduction can only be viewed as coincidental.



References

1. E.I. Thorsos and A. Ishimaru, "An Examination of the Full-Wave Method for Rough
Surface Scattering," presented at the National Radio Science Meeting, Boulder
Colorado, January 1988.

2. E. Bahar, "Full-Wave Solutions for the Scattered Radiation Fields from Rough
Surfaces with Arbitrary Slope and Frequency," IEEE Trans. Antennas Propagat.
AP-28, 1980, 11-21.

3. E.I. Thorsos, "The validity of the Kirchhoff approximation for rough surface
scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., 83, 78-92
(1988).

4. D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, New
York, 1960), p. 429.

5. E. Bahar, "Review of the Full Wave Solutions for Rough Surface Scattering and
Depolarization: Comparisons with Geometric and Physical Optics, Perturbation,
and Two-Scale Hybrid Solutions," Journal of Geophysical Research 92, 5209-5224
(1987).


